Northwest Africa 4884 Anorthosite-bearing basaltic regolith breccia 42 g Figure 1: Interior surface of NWA 4884 with fingers for scale. #### Introduction Northwest Africa 4884 was found in 2007 in northwest Africa. It is comprised of a single stone (42 g) partially covered by black fusion crust; interior slices show it to be a breccia composed of white, beige and light gray clasts in a dark gray matrix (Fig. 1). ### **Petrography and Mineralogy** Preliminary reports (Connolly et al., 2008) describe it as a "regolithic breccia composed of abundant angular mineral and lithic clasts in a sparse vesicular, glassy matrix. Mineral fragments include calcic plagioclase (An_{92.4-95.3}Or_{0.5-0.1}), pigeonite (Fs_{52.3}Wo_{10.5}; FeO/MnO = 65.2), augite, Ti-chromite, ilmenite (one with a tiny baddeleyite inclusion) and silica polymorph. Lithic clasts include several types of mare basalt (a coarse-grained example is composed of olivine + zoned pigeonite + calcic plagioclase + ilmenite + troilite), granophyric intergrowths of Fe-rich augite+fayalitic olivine+silica polymorph, a coarse grained dunitic or troctolitic rock containing a large metal (associated with grain rutile and secondary ilmenite), and a large "breccia-within-breccia" clast. Mare basalt clasts and debris are predominant over highlands lithologies." clasts ($Fa_{37.0-37.7}$; FeO/MnO = 94-98) are very different from olivine in a basalt clast ($Fa_{87.9}$; FeO/MnO = 89), and augite lamella ($Fs_{31.9}Wo_{31.9}$; FeO/MnO = 60.3), pigeonite clast (Fs_{60.1}Wo_{7.0}, FeO/MnO = 71.1), and augite clasts ($Fs_{17.2}Wo_{36.9}$, FeO/MnO = 53.3) are slightly different in composition from those in the basaltic clasts. ### **Chemistry** The intermediate FeO content and high Sm are consistent with this sample being a mixture of anorthositic and basaltic materials in a regolith breccia (Table 1). | Table 1 | . Cnemica | ai composition of | INWA | |-----------|-----------|-------------------|------| | 4884 | | | | | reference | 1 | | | | | | | | | 4884 | | |---|-------------| | reference | 1 | | weight | 181 | | technique | INAA | | SiO ₂ % | | | TiO_2 | | | Al_2O_3 | | | Cr_2O_3 | | | FeO | 13.7 | | MnO | | | MgO | | | CaO | | | Na_2O | 0.365 | | K_2O | | | P_2O_5 | | | S % | | | sum | | | | | | Sc ppm | 30.1 | | | | | V | | | Cr | 2090 | | Cr
Co | | | Cr
Co
Ni | 2090
161 | | Cr
Co
Ni
Cu | | | Cr
Co
Ni
Cu
Zn | | | Cr
Co
Ni
Cu
Zn
Ga | | | Cr
Co
Ni
Cu
Zn
Ga | | | Cr
Co
Ni
Cu
Zn
Ga
Ge
As | | | Cr
Co
Ni
Cu
Zn
Ga
Ge
As | | | Cr
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Rb | | | Cr
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Rb | | | Cr
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Rb
Sr | | | Cr
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Rb
Sr
Y | | | Cr
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Rb
Sr | | | Ru | | | | |---------------------------------------|-------|--|--| | Rh | | | | | Pd ppb | | | | | Ag ppb | | | | | Cd ppb | | | | | In ppb | | | | | Sn ppb | | | | | Sb ppb | | | | | Te ppb | | | | | Cs ppm | | | | | Ba | | | | | La | | | | | Ce | | | | | Pr | | | | | Nd | | | | | Sm | 3.06 | | | | Eu | 0.786 | | | | Gd | | | | | Tb | | | | | Dy | | | | | Но | | | | | Er | | | | | Tm | | | | | Yb | | | | | Lu | | | | | Hf | | | | | Та | | | | | W ppb | | | | | Re ppb | | | | | Os ppb | | | | | Ir ppb | 3.4 | | | | Pt ppb | | | | | Au ppb | | | | | Th ppm | 0.93 | | | | U ppm | | | | | References: 1) Korotev et al. (2008). | | | | ## Radiogenic age dating ## **Cosmogenic isotopes and exposure ages** None yet reported. K. Righter, Lunar Meteorite Compendium, 2008